An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange
نویسنده
چکیده
Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatility estimates. The second one is to contribute to extend the very scarce empirical research on VaR estimation in emerging financial markets. Methods/Approach: Using the daily returns of the Macedonian stock exchange index-MBI 10, we have tested the performance of the symmetric GARCH (1,1) and the GARCH-M model as well as of the asymmetric EGARCH (1,1) model, the GARCH-GJR model and the APARCH (1,1) model with different residual distributions. Results: The most adequate GARCH family models for estimating volatility in the Macedonian stock market are the asymmetric EGARCH model with Student’s t-distribution, the EGARCH model with normal distribution and the GARCH-GJR model. Conclusion: The econometric estimation of VaR is related to the chosen GARCH model. The obtained findings bear important implications regarding VaR estimation in turbulent times that have to be addressed by investors in emerging capital markets.
منابع مشابه
Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملEvaluation Approaches of Value at Risk for Tehran Stock Exchange
The purpose of this study is estimation of daily Value at Risk (VaR) for total index of Tehran Stock Exchange using parametric, nonparametric and semi-parametric approaches. Conditional and unconditional coverage backtesting are used for evaluating the accuracy of calculated VaR and also to compare the performance of mentioned approaches. In most cases, based on backtesting statistics Results, ...
متن کاملDynamic Cross Hedging Effectiveness between Gold and Stock Market Based on Downside Risk Measures: Evidence from Iran Emerging Capital Market
This paper examines the hedging effectiveness of gold futures for the stock market in minimizing variance and downside risks, including value at risk and expected shortfall using data from the Iran emerging capital market during four different sub-periods from December 2008 to August 2018. We employ dynamic conditional correlation models including VARMA-BGARCH (DCC, ADCC, BEKK, and ABEKK) and c...
متن کاملDeveloping Non-linear Dynamic Model to Estimate Value at Risk, Considering the Effects of Asymmetric News: Evidence from Tehran Stock Exchange
Empirical studies show that there is stronger dependency between large losses than large profit in financial market, which undermine the performance of using symmetric distribution for modeling these asymmetric. That is why the assuming normal joint distribution of returns is not suitable because of considering the linier dependence, and can be lead to inappropriate estimate of VaR. Copula theo...
متن کاملMarket Risk Recognition by Different Models in Listed Banks of Tehran Stock Exchange and OTC
One of the most important methods employed to measure the market risk is value at risk calculation method. In this study, the value at risk of banks listed on the Tehran Stock Exchange and Over-the-counter (OTC) are calculated using parametric model, Monte Carlo simulation, historical simulation and Two-Sided Power (TSP) Distribution. The sample includes all listed banks in Iran. The results sh...
متن کامل